Yael David: Publications


Zheng Q, Osunsade A, David Y. Protein arginine deiminase 4 antagonizes methlyglyoxal-induced histone glycation. Nat Commun. 2020 Jun 26;11(1):3241. doi: 10.1038/s41467-020-17066-y.

Maksimovic I, Zheng Q, Trujillo MN, Galligan JJ, David Y. An Azidoribose Probe to Track Ketoamine Adducts in Histone Ribose Glycation.J Am Chem Soc. 2020 Jun 3;142(22):9999-10007. doi: 10.1021/jacs.0c01325. Epub 2020 May 22.

Zheng Q, Maksimovic I, Upad A, David Y. Non-enzymatic covalent modifications: a new link between metabolism and epigenetics. Protein Cell. 2020 Jun;11(6):401-416. doi: 10.1007/s13238-020-00722-w. Epub 2020 Apr 30. Free PMC article. Review.

Prescott NA, David Y. In Vivo Histone Labeling Using Ultrafast trans-Splicing Inteins. Methods Mol Biol. 2020;2133:201-219. doi: 10.1007/978-1-0716-0434-2_10.

Zheng Q, Maksimovic I, Upad A, Guber D, David Y. Synthesis of an Alkynyl Methylglyoxal Probe to Investigate Nonenzymatic Histone Glycation. J Org Chem. 2020 Feb 7;85(3):1691-1697. doi: 10.1021/acs.joc.9b02504. Epub 2020 Jan 7.

Maksimovic I, Ray D, Zheng Q and David Y. Utilizing intein trans-splicing for in vivo generation of site-specifically modified proteins. Methods in Enzymology. 2019;626:203-222. doi: 10.1016/bs.mie.2019.07.015. Epub 2019 Aug 2.

Prescott NA and David Y. Utilizing intein trans-splicing for in vivo generation of site-specifically modified proteins. Methods in Molecular Biology. 2020;2133:201-219. doi: 10.1007/978-1-0716-0434-2_10.

Maksimovic I, Ray D, Zheng Q and David Y. Utilizing intein trans-splicing for in vivo generation of site-specifically modified proteins. Methods in Enzymology. doi.org/10.1016/bs.mie.2019.07.015

Prescott NA and David Y. Utilizing intein trans-splicing for in vivo generation of site-specifically modified proteins. Methods in Molecular Biology. In press.

Zheng Q, Omans ND, Leicher R, Osunsade A, Agustinus AS, Finkin-Groner E, D’Ambrosio H, Liu B, Chandarlapaty S, Liu S, David Y. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nat Commun. 2019 Mar 20;10(1):1289. doi: 10.1038/s41467-019-09192-z

Zheng Q, Prescott NA, Maksimovic I, David Y. (De)Toxifying the Epigenetic Code. Chem Res Toxicol. 2019 Mar 18. doi: 10.1021/acs.chemrestox.9b00013.

Osunsade A, Prescott NA, Hebert JM, Ray DM and David Y. A Robust Method for the Purification and Characterization of the Human Histone H1 Variants. Biochemistry. 2018 Dec 26. doi: 10.1021/acs.biochem.8b01060.

Oslund RC, Su X, Haugbro M, Kee JM, Esposito M, David Y, Wang B, Ge E, Perlman DH, Kang Y, Muir TW, Rabinowitz JD. Bisphosphoglycerate mutase controls serine pathway flux via 3-phosphoglycerate. Nat Chem Biol. 2017 Oct;13(10):1081-1087. doi: 10.1038/nchembio.2453. Epub 2017 Aug 7.

David Y, Muir TW. Emerging Chemistry Strategies for Engineering Native Chromatin J Am Chem Soc. 2017 Jul 12;139(27):9090-9096. doi: 10.1021/jacs.7b03430. Epub 2017 Jun 27.

Liszczak GP, Brown ZZ, Kim SH, Oslund RC, David Y, Muir TW. Genomic targeting of epigenetic probes using a chemically tailored Cas9 system. PNAS. 2017 Jan 24;114(4):681-686

Matthew Holt, Yael_David, Sam Pollock, Zhanyun Tang, Jongcheol Jeon, Jaehoon Kim, Robert G. Roeder and Tom W. Muir. Identification of a Functional Hotspot on Ubiquitin Required for Stimulation of Methyltransferase Activity on Chromatin. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10365-70.

Yael David, Miquel Vila-Perello, Shivam Verma and Tom Muir. Chemical Tagging and Customizing of Cellular Chromatin States using Ultrafast Trans-Splicing Inteins. Nature Chemistry. 2015 May;7(5):394-402.

  • Featured in Nature Methods Research Highlights: Doerr A, ‘Chemical Biology: Tinkering with chromatin’. Nature Methods. 2015 May:12, 491.
  • Featured in Nature Chemistry News and Views: Fischle W, Schwarzer D, Mootz HD. ‘Chemical biology: Chromatin chemistry goes cellular’. Nature Chemistry. 2015 May;7(5):371-3
  • Featured in EurekAlert AAAS, PhysOrg Science news (Chemistry), Science Newsline and others: Nguyen T. ‘Decoding the cell’s genetic filing system’.

Altun M, Walter TS, Kramer HB, Herr P, Iphöfer A, Boström J, David Y, Komsany A, Ternette N, Navon A, Stuart DI, Ren J, Kessler BM. The human otubain2-ubiquitin structure provides insights into the cleavage specificity of poly-ubiquitin-linkages. PLoS One. 2015 Jan 15;10(1):e0115344

Nguyen UT, Bittova L, Müller MM, Fierz B, David Y, Houck-Loomis B, Feng V, Dann GP, Muir TW. Accelerated Chromatin Biochemistry using DNA-barcoded Nucleosome Libraries. Nature Methods. 2014 Aug;11(8):834-40

Berko D, Herkon O, Braunstein I, Isakov E, David Y, Ziv T, Navon A, Stanhill A. Inherent Asymmetry in the 26S Proteasome is Defined by the Ubiquitin Receptor RPN13. J Biol Chem. 2014 Feb 28;289(9):5609-18

Shahar-Pomerantz Y, Elbaz J, Kirenberg I, Reizel Y, David Y, Galiani D, Nevo N, Navon A, Dekel N. From Ubiquitin-Proteasomal Degradation to CDK1 Inactivation: Requirements for the First Polar Body Extrusion in Mouse Oocytes. FASEB J. 2012 Nov;26(11):4495-505.

David Y, Ternette N, Edelmann M, Ziv T, Gayer B, Sertchook R, Dadon Y, Kessler BM, Navon A. E3 Ligases Determine the Ubiquitination Site and Chain Type by Enforcing Specificity on E2 Enzymes. J Biol Chem. 2011 Dec 23;286(51):44104-15

Shimshon L, Michaeli A, Hadar R, Nutt SL, David Y, Navon A, Waisman A, Tirosh B. SUMOylation of Blimp-1 promotes its proteasomal degradation. FEBS Lett. 2011 Aug 4;585(15):2405-9

David Y, Ziv T, Admon A, Navon A. The E2 Ubiquitin Conjugating Enzymes Direct Polyubiquitination to Preferred Lysines. J Biol Chem. 2010 Mar 19;285(12):8595-604. 10.

Shtiegman K, Kochupurakkal BS, Zwang Y, Pines G, Starr A, Vexler A, Citri A, Katz M, Lavi S, Ben-Basat Y, Benjamin S, Corso S, Gan J, Yosef RB, Giordano S, Yarden Y. (2007) Defective ubiquitylation of EGFR mutants of lung cancer confers prolonged signaling. Oncogene. 2007 Oct 25;26(49):6968-78